Welcome

Planetary Lander Landing Stability Mechanics for Lateral Motion

Gary M Ortiz
Laura Redmond
Jet Propulsion Laboratory
California Institute of Technology

Spacecraft Structures and Dynamics Group Spacecraft Mechanical Engineering Section Mechanical Systems Engineering, Fabrication and Test Division June 20-22, 2017

Overview

- A challenge for planetary lander design and analysis post initial impact is lateral stability threat
- If the lateral residual velocity is great enough, the lander will be subjected to pitching over by impacting obstacles in it path
- Sources for lateral velocities:
 - Lateral velocity requirements from project
 - Knowledge of lateral drift during descent
 - Knowledge of lateral wind velocity
 - Momentum transfer from slope Impact
- The following discussion will show a means for determining robustness of a lander to pitching over from lateral motion

Lateral Motion Post Initial Impact

Second Impact Mechanics: more challenging: addressing loads and stability for this phase usually lags in the design process

in the design process © 2017 California Institute of Technology. Government sponsorship acknowledged. First Impact Mechanics: well understood

Simulation of Planetary Lander using ADAMS

- ADAM used to simulate impacts and stability
- Rigid: sphere, drag plate, triangular plates, footpads
- Flexible: beam members with degraded stiffness to account for temperature effects
- Crushable material in main lander tube for energy dissipation
- Landing surface modeled as rigid with obstacles

ADAMS model of the lander

Idealization of Crushable

Pole Vaulting Analogy

- The mechanics of the sport of Pole Vaulting and Spacecraft subjected to lateral motion are similar from a mechanics perspective, but have different goals:
 - The Pole Vaulter requires:
 - Levels of approach kinetic such that an adequate amount of kinetic energy is available at the end of the vault to go over the bar
 - The Lander requires:
 - Levels of approach kinetic energy such that all is converted into gravitational potential energy such that the lander can recover safely on the approach side of the obstacle
- The goal is to have a means to determine how much approach velocity can be tolerated such that all the kinetic energy is converted to potential energy and the lander can recover safely:

Mechanics: Safe Velocity for Lateral Motion Robustness

Stability Robustness of a lander design can be measured by how much lateral velocity can be tolerated at impact

From rigid body mechanics, the velocity, **V_safe**, can be derived from familiar conservations laws of: Energy and Momentum

V_safe: Maximum approach velocity such that all kinetic energy is converted into gravitational potential energy

r: distance from pivot to lander CM

ry': Normal distance to cm from surface

rx': distance from pivot of hard-stop to cm

Δy: Maximum vertical distance mass displaces

θ: Slope angle

m: mass

Icm: Centroidal moment of inertia

lo: Moment of inertia about point o

g: gravity

Reference Frame Model

Mechanics: Safe Velocity Determination

V_{safe} is a measure of robustness of a lander to tip over and should be m,lcm maximized Δy Stability Axis V_{safe} highly dependent on V safe lander geometry and mass Lander CM distribution: θ $/2mg\Delta yI_o$ ry ry

Minimize ry' for larger V_{safe} Maximize potential by maximizing Δy

Maximize mass distribution Pivot

ass V
Pivot point

Reference Frame Model

θ

To maximize V_{safe}

Minimize CM height Maximize Footprint

rx

Calculation of Vsafe:

 Excerpt from spread sheet for Vsafe calculation as a function of Slope angle:

							_					
mass(kg)	Icm(kg-m^2)	gravity (m/s^2)	ry', vertical	rx' distance parallel								
			distance to cm	to surface from cm	Slope Angle		Slope	e Angle			Slope Angle	
			normal to	to minimum	(deg)		(d	leg)			(deg)	
			surface (m)	footprint radius (m)								
					0			5			10	
ОИТРИТ												
Apparent CM coordinates in x-y Csys		Distance r, magnitude (m)	Moment of Inertia from Pivot (kg-m^2)	Δy (m), Maximum distance work is done		V_SAFE (m/s)			V_SAFE (m/s)			V_SAFE (m/s)
ry(m)	rx(m)											
-,,	. ,					3.1			2.7			2.3

Slope Angle (deg)	V_safe (m/s)
0	3.1
5	2.7
10	2.3

Overview

- Using ADAMS, landing stability for a 2 leg impact of hard-stop on a sloped surface will be shown
- The surface is rigid and has the following coefficients of friction: Static: 0.1; Dynamic: 0.05
- From ADAMS a comparison of the lateral residual velocities from an impact will be compared to Vsafe
- d1 and d2 are locations from the pivot point of the hard stop to the lander center of mass

ADAMS Model variable definitions

Case Study: Zero Slope; Pinned to Ground Safe Velocity = 3.1 m/s

Case Study: Zero Slope; 3 (m/s) Lat.; 9.5m/s vert. Safe Velocity = 3.1

Case Study: 10 deg. Slope; No Hard Stop to Determine Residual Velocity from Momentum Transfer

Case Study: 10 deg. Slope with Hard Stop Vsafe = 2.34 m/s

Margin for Lateral Velocity = 2.34 m/s - 1.95 m/s = 0.39 m/s

Case Study: 10 deg. Slope at 0.39 (m/s) lat. Safe Velocity = 2.34

Case Study: 10 deg. Slope at 0.5 (m/s) lat. Safe Velocity = 2.34

Conclusion

- For planetary landers, one measure of robustness to lateral impacts can be how much lateral velocity the design can tolerate for stability
- Lateral initial conditions are not sufficient to design to; lateral residual velocities from impacts must also be considered
- In addition to numerical means for accessing stability, analytical approaches can be used to determine and locate at what point the design fails for lateral stability

Thank you

